p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C42).3C4, C24.54(C2×C4), (C22×C4).276D4, C22.C42⋊16C2, C23.75(C22⋊C4), C24.4C4.19C2, (C22×C4).668C23, (C23×C4).242C22, C23.191(C22×C4), C22.31(C42⋊C2), C4.102(C22.D4), C2.10(C23.34D4), (C2×M4(2)).161C22, C2.25(M4(2).8C22), (C2×C4).1323(C2×D4), (C2×C22⋊C4).27C4, (C22×C4).55(C2×C4), (C2×C4).311(C4○D4), (C2×C4⋊C4).756C22, (C2×C4).334(C22⋊C4), (C2×C42⋊C2).16C2, C22.256(C2×C22⋊C4), SmallGroup(128,554)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C22×C4 — C2×C4⋊C4 — C2×C42⋊C2 — (C22×C4).276D4 |
Generators and relations for (C22×C4).276D4
G = < a,b,c,d,e | a2=b2=c4=1, d4=c2, e2=bc-1, ebe-1=ab=ba, dcd-1=ece-1=ac=ca, ad=da, ae=ea, bc=cb, dbd-1=abc2, ede-1=abcd3 >
Subgroups: 260 in 136 conjugacy classes, 52 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C2×M4(2), C23×C4, C22.C42, C24.4C4, C2×C42⋊C2, (C22×C4).276D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C42⋊C2, C22.D4, C23.34D4, M4(2).8C22, (C22×C4).276D4
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(2 31)(4 25)(6 27)(8 29)(9 13)(10 24)(11 15)(12 18)(14 20)(16 22)(17 21)(19 23)
(1 3 5 7)(2 29 6 25)(4 31 8 27)(9 15 13 11)(10 22 14 18)(12 24 16 20)(17 23 21 19)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 7 16 5 10 3 12)(2 17 4 23 6 21 8 19)(9 31 15 25 13 27 11 29)(18 26 20 32 22 30 24 28)
G:=sub<Sym(32)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (2,31)(4,25)(6,27)(8,29)(9,13)(10,24)(11,15)(12,18)(14,20)(16,22)(17,21)(19,23), (1,3,5,7)(2,29,6,25)(4,31,8,27)(9,15,13,11)(10,22,14,18)(12,24,16,20)(17,23,21,19)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,7,16,5,10,3,12)(2,17,4,23,6,21,8,19)(9,31,15,25,13,27,11,29)(18,26,20,32,22,30,24,28)>;
G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (2,31)(4,25)(6,27)(8,29)(9,13)(10,24)(11,15)(12,18)(14,20)(16,22)(17,21)(19,23), (1,3,5,7)(2,29,6,25)(4,31,8,27)(9,15,13,11)(10,22,14,18)(12,24,16,20)(17,23,21,19)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,7,16,5,10,3,12)(2,17,4,23,6,21,8,19)(9,31,15,25,13,27,11,29)(18,26,20,32,22,30,24,28) );
G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(2,31),(4,25),(6,27),(8,29),(9,13),(10,24),(11,15),(12,18),(14,20),(16,22),(17,21),(19,23)], [(1,3,5,7),(2,29,6,25),(4,31,8,27),(9,15,13,11),(10,22,14,18),(12,24,16,20),(17,23,21,19),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,7,16,5,10,3,12),(2,17,4,23,6,21,8,19),(9,31,15,25,13,27,11,29),(18,26,20,32,22,30,24,28)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 4I | ··· | 4P | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | C4○D4 | M4(2).8C22 |
kernel | (C22×C4).276D4 | C22.C42 | C24.4C4 | C2×C42⋊C2 | C2×C42 | C2×C22⋊C4 | C22×C4 | C2×C4 | C2 |
# reps | 1 | 4 | 2 | 1 | 4 | 4 | 4 | 8 | 4 |
Matrix representation of (C22×C4).276D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 15 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
16 | 9 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,15,13,0,0,0,0,0,0,0,0,0,13,0,0,0,0,13,0,0,0,0,16,0,0,0,0,1,0,0,0],[16,0,0,0,0,0,9,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,1,0,0,0,0,0,0,1,0,0] >;
(C22×C4).276D4 in GAP, Magma, Sage, TeX
(C_2^2\times C_4)._{276}D_4
% in TeX
G:=Group("(C2^2xC4).276D4");
// GroupNames label
G:=SmallGroup(128,554);
// by ID
G=gap.SmallGroup(128,554);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,456,422,58,2804,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=c^2,e^2=b*c^-1,e*b*e^-1=a*b=b*a,d*c*d^-1=e*c*e^-1=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=a*b*c^2,e*d*e^-1=a*b*c*d^3>;
// generators/relations